Développement d'un simulateur de performances pour le spectrographe NIRSpec du futur télescope spatial JWST

Soutenance de thèse de Xavier Gnata

CRAL - EADS/Astrium

07/12/2007

- James Webb Space Telescope
- Un des projets majeurs de l'astronomie pour les dix ans à venir
- Présenté comme le successeur du télescope spatial Hubble
 - Succès scientifique énorme

Collaboration entre trois grandes agences spatiales :

- La NASA (National Air and Space Administration)
- L'ESA (European Space Agency)
- La CSA (Canadian Space Agency)

- Miroir primaire segmenté de 6.5 m
- 18 segments hexagonaux en béryllium
- $\bullet\,$ Observations de 0.6 à 28 $\mu m \rightarrow$ Refroidissement passif à 30 K
- Lancement en 2013

JWST/NIRSpec

- Miroir primaire segmenté de 6.5 m
- 18 segments hexagonaux en béryllium
- Observations de 0.6 à 28 $\mu m \rightarrow$ Refroidissement passif à 30 K
- Lancement en 2013

- Miroir primaire segmenté de 6.5 m
- 18 segments hexagonaux en béryllium
- $\bullet\,$ Observations de 0.6 à 28 $\mu m \rightarrow$ Refroidissement passif à 30 K
- Lancement en 2013

JWST/NIRSpec

- Miroir primaire segmenté de 6.5 m
- 18 segments hexagonaux en béryllium
- $\bullet\,$ Observations de 0.6 à 28 $\mu m \rightarrow$ Refroidissement passif à 30 K
- Lancement en 2013

- Miroir primaire segmenté de 6.5 m
- 18 segments hexagonaux en béryllium
- $\bullet\,$ Observations de 0.6 à 28 $\mu m \rightarrow$ Refroidissement passif à 30 K
- Lancement en 2013

JWST/NIRSpec

- Miroir primaire segmenté de 6.5 m
- 18 segments hexagonaux en béryllium
- Observations de 0.6 à 28 $\mu m \rightarrow$ Refroidissement passif à 30 K
- Lancement en 2013

Les objectifs scientifiques du JWST

- La cosmologie et la structure de l'Univers
- La formation et l'évolution des galaxies

- La naissance et la formation des étoiles
- La formation et l'évolution des systèmes planétaires

Les instruments à bord de JWST

- NIRCam : Caméra et coronographe proche-infrarouge. Également utilisée pour le cophasage des 18 segments
- MIRI : Caméra et Spectrographe infrarouge moyen (5 - 28 μm). Refroidissement actif à l'hélium
- FGS : Système imageur pour le guidage fin et Fabry-Pérot ajustable (1.5 - 5 μm)
- NIRSpec : Near Infrared Spectrograph Spectrographe proche infrarouge (0.6 - 5.0 μm)

- L'instrument NIRSpec
- Compréhension du rôle des aberrations et de la diffraction dans JWST/NIRSpec
- Oéfinition et utilisation de transformations de coordonnées
- Simulations de poses du Modèle de Démonstration
- Simulations du modèle de vol

NIRSpec

- NIRSpec est un spectrographe multi-objets (MOS)
- Plus de 100 spectres en une seule pose dans un champ de 3×3 arcminutes
- R=2700 et R=1000 (réseaux). R=100 (prisme).

NIRSpec

- NIRSpec est un spectrographe multi-objets (MOS)
- Plus de 100 spectres en une seule pose dans un champ de 3×3 arcminutes
- R=2700 et R=1000 (réseaux). R=100 (prisme).
 - $\bullet~$ Sélection des objets : 4 matrices de 384 \times 175 micro-obturateurs de 100 par 200 μm

NIRSpec

- NIRSpec est un spectrographe multi-objets (MOS)
- Plus de 100 spectres en une seule pose dans un champ de 3 × 3 arcminutes
- R=2700 et R=1000 (réseaux). R=100 (prisme).
 - $\circ~$ Sélection des objets : 4 matrices de 384 \times 175 micro-obturateurs de 100 par 200 μm

- Mode intégral de champ (IFU) de 3 × 3 arcsecondes
- Mode fentes fixes (slit) de 100, 200 et 400 milli-arcsecondes (contraste élevé)

Mode MOS / Mode IFU

Vue d'ensemble de NIRSpec

Utilisation du SiC

Xavier Gnata

Interface optique NIRSpec/JWST

Pourquoi simuler NIRSpec?

Instrument complexe

- Bande spectrale de plus de 3 octaves (0.6 5.0 μm)
 - Rôle clef des erreurs de fabrication (TMA) et de la diffraction (micro-obturateurs) dans les performances de l'instrument
- Nombreuses configurations :
 - Trois résolutions R=2700, R=1000 et R=100
 - Multi-objets, fentes fixes, imagerie, calibration et IFU
 - o 27 configurations
- Aider au développement des logiciels de traitement des poses de NIRSpec

Compréhension du rôle des **aberrations** et de la **diffraction** dans JWST/NIRSpec

Optique de Fourier

- Modélisation en Optique de Fourier
- Propagation du front d'onde entre plans pupilles et plans images (et vice versa) par Transformée de Fourier

Optique de Fourier

- Modélisation en Optique de Fourier
- Propagation du front d'onde entre plans pupilles et plans images (et vice versa) par Transformée de Fourier

Module d'Optique de Fourier

- Discrétisation : Transformée de Fourier \rightarrow Fast Fourier Transform
- Échantillonnage, zéro-padding et calcul numérique intensif

Module d'Optique de Fourier

- Discrétisation : Transformée de Fourier \rightarrow Fast Fourier Transform
- Échantillonnage, zéro-padding et calcul numérique intensif
- Tests sur des cas simples analytiques :
 - Théorie de Nijboer-Zernike. Description analytique d'une PSF de coma

Modélisation du télescope (1/4)

- Objectif : Obtenir une description réaliste des erreurs de front d'onde induites par le télescope.
- Onnées :
 - Pas de mesures
 - Budget d'erreurs de front d'onde de 145 nm RMS sur 235 nm totaux
 - Répartition entre les basses, moyennes et hautes fréquences

Modélisation du télescope (1/4)

- Objectif : Obtenir une description réaliste des erreurs de front d'onde induites par le télescope.
- Onnées :
 - Pas de mesures
 - Budget d'erreurs de front d'onde de 145 nm RMS sur 235 nm totaux
 - Répartition entre les basses, moyennes et hautes fréquences

Modélisation du télescope (2/4)

- Pas d'échantillonnage du primaire de 1 cm
 - Échantillonnage insuffisant pour décrire les hautes fréquences (Rugosité)
 - Un modèle ad hoc de lumière diffusée pourra être ajouté
- Sommes équipondérées de polynômes de Zernike pour basses (pleine ouverture) et moyennes fréquences (échelle d'un segment)

Modélisation du télescope (2/4)

- Pas d'échantillonnage du primaire de 1 cm
 - Échantillonnage insuffisant pour décrire les hautes fréquences (Rugosité)
 - Un modèle ad hoc de lumière diffusée pourra être ajouté
- Sommes équipondérées de polynômes de Zernike pour basses (pleine ouverture) et moyennes fréquences (échelle d'un segment)

Base de polynômes orthonormés sur un hexagone régulier
Procédé itératif de Gram-Schmidt

Modélisation du télescope (3/4)

Orthonormalisation des polynômes de Zernike sur un hexagone

$$\begin{cases} Z_{1}^{H} = Z_{1} & \hat{Z}_{1}^{H} = \frac{Z_{1}^{H}}{\sqrt{\langle Z_{1}^{H}, Z_{1}^{H} \rangle}} \\ Z_{k}^{H} = Z_{k} - \sum_{j=1}^{k-1} \frac{\langle Z_{j}, Z_{k}^{H} \rangle}{\langle Z_{j}, Z_{j} \rangle} Z_{j} & \hat{Z}_{k}^{H} = \frac{Z_{k}^{H}}{\sqrt{\langle Z_{k}^{H}, Z_{k}^{H} \rangle}} \\ \langle Z_{i}, Z_{j} \rangle = \iint_{H} Z_{i}(x, y), Z_{j}(x, y) dx dy \end{cases}$$

$$H = \begin{cases} -\frac{\sqrt{3}}{2} \leqslant y \leqslant \frac{\sqrt{3}}{2} \\ -\sqrt{3} \leqslant \sqrt{3}x + y \leqslant \sqrt{3} \\ -\sqrt{3} \leqslant \sqrt{3}x - y \leqslant \sqrt{3} \end{cases}$$

Modélisation du télescope (4/4)

- Expressions analytiques des Z_k^H , $k \leq 50$
- Transposable à d'autres formes simples de pupilles
- Produit scalaire analytique ou numérique
- Carte simulée représentative du télescope
- Référence pour le projet et les simulations

 Maurice te Plate (European Space Agency), Pierangelo Marenaci (ESA - EADS/Astrium), Jose Lorenzo Alvarez (ESA)

PSF du télescope et de l'optique de relais

• Aberrations de l'optique de relais : 11 polynômes de Zernike

- 0.6 2.0 μm : Limité par les aberrations
- 2.0 5.0 μm : Limité par la diffraction

Pertes de fentes (1/3)

- Pertes de fente : Pertes fonction du centrage de la PSF dans la (pseudo)-fente.
- PSF à 2 μm. Exemple de centrages :

Pertes de fentes (2/3)

Xavier Gnata

Pertes de fentes (2/3)

Xavier Gnata

Pertes de fentes (2/3)

Pertes de fentes (3/3)

 Pertes de fente en fonction de la longueur d'onde. Une pseudo-fente ouverte :

- Importance des pertes de fentes
- Légère asymétrie due aux aberrations
Stabilité photométrique

- Précision de pointage de 5 μm 1σ dans le plan des micro-obturateurs
- Contour rouge : Stabilité photométrique à ±5%

 $\lambda = 5 \ \mu m$

Conclusion sur les pertes de fente

- Pertes de fente importantes
- Importance de la diffraction dans un MOS comme NIRSpec
- Définition d'une zone d'acceptance

ADASS XIII ASP Conference Series, Vol. 314, 2004. "End to end Simulation of the JWST/NIRSpec instrument" X. Gnata, P. Ferruit, A. Pécontal Rousset

Modélisation des micro-obturateurs (1/2)

Micro-obturateurs modélisés par un masque 2D binaire mais...

Modélisation des micro-obturateurs (1/2)

• Micro-obturateurs modélisés par un masque 2D binaire mais...

- Pertes de lumière entre les deux faces des MSA
- Propagation de Fresnel entre les deux faces

Modélisation des micro-obturateurs (2/2)

PSF centrée dans un micro-obturateur

- Système complexe (réflexion, guide d'ondes)
- Hypothèse de «murs absorbants»
- Possibilité de modélisation «Maxwell 3D»

Fresnel : Bon compromis complexité du modèle / importance système

Xavier Gnata

Pertes par diffraction (1/3)

Pertes par diffraction (1/3)

Pertes par diffraction (1/3)

Pertes par diffraction (2/3)

• Calcul de l'illumination du plan des disperseurs

Décentrage	1 µm	3 µm	5 µm
PSF centrée			
20 µm			
40 µm			

(échelle log)

		~		
Xav	ior	(. r	nata	
7.uv		u	iala	

Pertes par diffraction (3/3)

 Pertes dans le plan des réseaux en fonction du centrage de la PSF

- Pertes non négligeables mais dans les spécifications
- Contraintes d'enveloppe mécanique

Cas du mode IFU (1/3)

Cas du mode IFU (2/3)

Illumination dans le plan de réseaux dans le mode IFU

Cas du mode IFU (3/3)

• PSF sur le détecteur (2 FFT pour modéliser collimateur/caméra)

Fonction de fente

- Élément de résolution spectrale
- Convolution de l'image de la fente par la PSF spectrale
- Fonction de fente spécifiée de 2.2 pixels
- Fonction de fente moyenne calculée de 2.1 pixels

Définition et utilisation de transformations de coordonnées

Les transformations de coordonnées dans un MOS

Les transformations de coordonnées dans un MOS

Importance des transformations de coordonnées

```
Xavier Gnata
```

CRAL - EADS/Astrium

Définition de la distorsion

Du ciel aux micro-obturateurs

- Module de tracé de rayons de Zemax
- Importance de la connaissance de la distorsion en mode MOS
- $\,$ $\,$ 1.3% de distorsion dans le plan MSA \sim 6 micro-obturateurs
- Spécification : Modélisation polynomiale de degré au plus 5 (RMS<2 μm)

Du ciel aux micro-obturateurs

- Module de tracé de rayons de Zemax
- Importance de la connaissance de la distorsion en mode MOS
- 1.3% de distorsion dans le plan MSA \sim 6 micro-obturateurs
- Spécification : Modélisation polynomiale de degré au plus 5 (RMS<2 μm)

$$\begin{cases} X = P_x(X_{model}, Y_{model}) = \sum_{i=0}^{N} \sum_{j=i}^{N-i} a_{i,j} X_{model}^{i} Y_{model}^{j} \\ Y = P_y(X_{model}, Y_{model}) = \sum_{i=0}^{N} \sum_{j=i}^{N-i} b_{i,j} X_{model}^{i} Y_{model}^{j} \end{cases}$$

Influence de chromatisme (1/2)

- Filtre tilté dans l'optique de relais
- 10 µm de chromatisme latéral

Influence de chromatisme (2/2)

Coefficients de l'ajustement fonction de la longueur d'onde

$$\begin{cases} X = P_x(X_{model}, Y_{model}) = \sum_{i=0}^{N} \sum_{\substack{j=i \\ N}}^{N-i} a_{i,j}(\lambda) X_{model}^{i} Y_{model}^{j} \\ Y = P_y(X_{model}, Y_{model}) = \sum_{i=0}^{N} \sum_{\substack{j=i \\ N-i}}^{N-i} b_{i,j}(\lambda) X_{model}^{i} Y_{model}^{j} \\ a_{i,j}(\lambda) = \alpha_{i,j}\lambda + \beta_{i,j} \\ b_{i,j}(\lambda) = \gamma_{i,j}\lambda + \delta_{i,j} \end{cases}$$

Influence de chromatisme (2/2)

Résultats :

• Entre le ciel et le plan MSA :

$$egin{aligned} & (P_x(X_{model}, Y_{model}) \sim \mathit{Id}_{X_{model}} \ & P_y(X_{model}, Y_{model}) \sim \mathit{Id}_{Y_{model}} \end{aligned}$$

Erreur résiduelle inférieure à 0.2 μm

- Modélisation polynomiale du collimateur et de la caméra
- Collimateur : $(X_{MSA}, Y_{MSA}) \rightarrow (C_{X_i}, C_{Y_i})$
- Caméra : $(C_{X_r}, C_{Y_r}) \rightarrow (X_{FPA}, Y_{FPA})$

Influence de chromatisme (2/2)

Résultats :

• Entre le ciel et le plan MSA :

$$egin{aligned} & (P_x(X_{model}, Y_{model}) \sim \mathit{Id}_{X_{model}} \ & P_y(X_{model}, Y_{model}) \sim \mathit{Id}_{Y_{model}} \end{aligned}$$

Erreur résiduelle inférieure à 0.2 μm

- Modélisation polynomiale du collimateur et de la caméra
- Collimateur : $(X_{MSA}, Y_{MSA}) \rightarrow (C_{X_i}, C_{Y_i})$
- Caméra : $(C_{X_r}, C_{Y_r}) \rightarrow (X_{FPA}, Y_{FPA})$
- Ajoutons un modèle des disperseurs (Target acquisition mirror, réseaux, prisme)
 - o Transformations de coordonnées ciel ↔ détecteurs

Modèle des réseaux

• Le Target Acquisition Mirror sert de référence

$$\begin{cases} C'_{Xr} = C'_{Xi} \\ C'_{Yr} = -(C'_{Xi} - N * D * \lambda) \\ C'_{Zr} \text{ tel que } \sqrt{(C'_{Xr})^2 + (C'_{Yr})^2 (C'_{Zr})^2} = 1 \\ N \triangleq \text{ Ordre de diffraction} \\ D \triangleq \text{ Densité de traits (traits/mm)} \end{cases}$$

Modèle du prisme

• Lois de Descartes

$$\begin{cases} \mathbf{R}_{1} = \mathbf{I} - (2\mathbf{I}.\mathbf{N})\mathbf{N} \\ \mathbf{R}_{2} = \sqrt{1 - \left(\frac{n_{1}(\lambda)}{n_{2}(\lambda)}\right)^{2}(1 - (\mathbf{I}.\mathbf{N})^{2})\mathbf{N} - \frac{n_{1}(\lambda)}{n_{2}(\lambda)}(\mathbf{N}.\mathbf{I})\mathbf{N} - \mathbf{I}} \end{cases}$$

Modèle du prisme

$$\begin{cases} C_{Xr} = f(C_{Xi}, C_{Yi}, \theta_1, \theta_2, n(\lambda)) \\ C_{Yr} = -C_{Yi} \\ C_{Zr} & \text{tel que} : C_{Xr}^2 + C_{Yr}^2 + C_{Zr}^2 = 1 \end{cases}$$

Modèle polynômial de n_{CaF2}(λ, T)

Conclusion sur les transformations de coordonnnées

- Importance des transformations de coordonnées dans un spectrographe multi-objets
- Précision du modèle «ciel-détecteurs» dans les spécifications dans tous les modes de NIRSpec

Conclusion sur les transformations de coordonnnées

- Importance des transformations de coordonnées dans un spectrographe multi-objets
- Précision du modèle «ciel-détecteurs» dans les spécifications dans tous les modes de NIRSpec
- Calcul des paramètres des disperseurs
- Calcul de la résolution spectrale
- Tester le design de NIRSpec (8 spécifications système testées)
- Module Python autogénéré et distribué dans le consortium

Simulations de **poses** du Modèle de Démonstration

Contexte du projet

- Logiciel de simulations **livrable** : Instrument Performance Simulator
 - Contraintes de plannings
- Besoin de poses simulées pour le développement de Instrument Quick Look Analysis and Calibration
- Campagne de tests cryogéniques
 - Tests et validation de l'IQLAC
- Briques élémentaires assemblées en un prototype
- Poses livrables

Prototype simulant le Modèle de Démonstration (DM)

- Imageur
 - Optique de relais
 - Mécanisme de refocalisation
 - Roue à filtres
- Illumination par sphère intégrante
 - Champ plat
 - Masques de trous sources (pinholes)

Exemple de poses simulées

- Codes prototypes produisant des poses livrables
- Masque de pinholes éclairé par une sphère intégrante
 - Formalisme de Fourier non cohérent
 - Module de distorsion Python/C++
 - "Convolution" de l'image géométrique par "la" PSF de l'optique de relais
 - Interpolation des PSF dans le champ et en longueur d'onde

Simulation du détecteur

- Cross-talk
- Réponse intra-pixel
- Bruits (grenaille et lecture)

Non-linéarité

Simulation du détecteur

- Cross-talk
- Réponse intra-pixel
- Bruits (grenaille et lecture)

Non-linéarité

$$\frac{\partial \Xi(t)}{\partial t} = \Lambda (1 - a \Xi(t) - b \Xi(t)^2)$$

 $a=0.01,\,b=0.001,\,\Lambda\in[1,2]$

Simulation du Modèle de Démonstration

Exemple de poses simulées

Poses livrées

• Faible rapport signal/bruit

Simulation du Modèle de Démonstration

Exemple de poses simulées

Poses livrées

Faible rapport signal/bruit

ADASS XVII ASP Conference Series, 2007 "Algorithms to model the multi-object spectrograph JWST/NIRSpec Instrument" X. Gnata, P. Ferruit

Xavier Gnata

CRAL - EADS/Astrium

Simulations du modèle de vol

Simulations du modèle de vol

Simulations du modèle de vol (1/2)

Le cas multi-objets :

- Formalisme de Fourier incohérent
- "Convoluer" l'image en entrée par "la" PSF jusqu'aux MSA
- Sélectionner les micro-obturateurs ouverts
- Calculer les spectres correspondants

Simulations du modèle de vol

Simulations du modèle de vol (2/2)

- Comment simuler 100 spectres en un temps raisonnable?
- "Convoluer uniquement ce qui doit l'être..."
- 4096 pixels spectraux

	Fond	Objets ponctuels	Objets étendus
Continuum			
Raies non résolues			
Raies résolues			

Conclusion

- Briques élémentaires de simulation
- Utile pour le développement de l'IPS
- Analyses de performances
- Impact sur le design
- Prototype : poses livrées en accord avec le planning de NIRSpec
- Publications et notes techniques
- Codes Python/C++ réutilisables...

Perspectives

- Tests du Modèle de Démonstration fin 2008
- Codes finaux de simulation du modèle de vol
- Autres projets ; autres simulations.

Keep It Stupid & Simple

Perspectives

Merci de votre attention

